
Abstract. Detailed formulae for the implementation of
the multi-con®guration SCF spinor optimization in a
basis of Kramers pair 2-spinors ± i.e. exploiting time-
reversal symmetry ± are presented. Full expressions for
the spinor gradient and spinor Hessian elements are given
in abstract form as well as within the usual CASSCF
subspace division. As far as possible, the resulting terms
are grouped to relativistic inactive and active Fock
matrices, which have been introduced previously. Ap-
proximations for the Hessian are introduced so as to
initialize it in an inverse Hessian update algorithm for a
diagonal ®rst approximation within the standard quasi-
Newton-Raphson procedure. The e�ects of double group
symmetry arising from spin dependence on Fock matri-
ces and therefore gradient and Hessian are discussed and
a group scheme for the implementation is proposed.

Key words: Relativistic two-component quantum
chemical methods ± Complete-active-space-SCF theory ±
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1 Introduction

Relativistic multi-component theories and developed
methods are gaining in importance as regards the
treatment of quantum chemistry problems [1±4]. Despite
promising developments in this ®eld, the application of
four-component methods leads to di�culties when, for
example, more than one ``relativistic centre'' occurs in
the molecule in question. A successful facilitation of the
computational e�orts has been achieved through the
reduction of four-component formalisms to two-com-
ponent and scalar relativistic theories and the imple-
mentation of the latter [5±7], which has been con®rmed
by highly satisfactory results in a number of electronic
structure calculations, e.g. [8±10]. Furthermore, the
problem of dealing with the two-particle spin-orbit
operator in extensive treatments of molecules has been

solved, yielding an e�ective one-electron operator for
spin-orbit coupling without losing computational accu-
racy in several signi®cant test cases [11].

Our development of a spin-dependent CASSCF
method is motivated by the need to generate a molecular
basis of one-particle functions in consideration of spin-
orbit coupling, especially for species with one or more
transition metal atoms or, in general, molecules with
``relativistic atoms''. An SCF approach usually does not
su�ce for these systems, as near-degeneracies occur
quite often and therefore static correlation has to be
accounted for.

In the present study, we have derived explicit for-
mulae for the spinor gradient and spinor Hessian matrix
within a spin-dependent relativistic approach, employing
the mean-®eld method for spin-orbit coupling. It allows
us to operate with spin-free two-electron integrals. With
respect to the implementation, this approach will also
place constraints on the couplings in the full-CI proce-
dure, where the possible double excitations will be lim-
ited in such a way that two-particle spin-¯ip excitations
will not occur.

The scope of the results presented in this study is not
necessarily limited to these conceptual simpli®cations
but applies to four-component methods as well. The
formalism may be extended to a full two-particle spin-
orbit operator with some e�ort, although this has not
been done up to this point. Nevertheless, the ideas
described above have been kept in mind throughout the
development, and the actual implementation will be
based on this framework.

2 Basic theory

2.1 Basis functions and symmetry considerations

Time-reversal symmetry may be readily applied to the
quantum chemistry concepts of many-electron problems
in principle [12, 13], and this has in fact been done in
several relativistic approaches [14±16]. Aucar et al. [17]
introduced time-reversal adapted Kramers basis opera-
tors which are the natural expansion set for any
relativistic operator and therefore replace the spin-
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adapted basis operators of non-relativistic theory. By
these means a symmetry blocking is achieved, leading to
computational savings in relativistic electronic structure
calculations. In the formalism of second quantization,
one-electron operators adopt the form

X�IJ � IyJ � J
y
I �1�

X�
IJ
� I

y
J � J

y
I �2�

X�
IJ
� IyJ � J yI : �3�

The superscript indices � and ÿ indicate symmetry or
antisymmetry of the operator with respect to time-
reversal, respectively. Introducing a bar on any index is
equivalent to acting with the time-reversal operator on
the spinor in question, i.e.

K̂/I � /I

K̂/I � ÿ/I

Two-electron operators are found to have the general
appearance [18]:

xs1s2
IJKL � X s1

IJ X s2
KL ÿ dJKIyLÿ s1dIKJ

y
L

ÿ s2dJLIyK ÿ s1s2dILJ
y
K; �4�

where s1 and s2 may be one of the above-mentioned
superscript indices. Any desired x operator may now be
generated by placing bars in Eq. (4) on the indices in
question and by taking into account that a spinor and
its time-reversed pendant may never be equivalent,
meaning

dIJ � 0 and dII � 0: �5�
If the plain operator is considered, i.e. no bars are

introduced, the third and fourth term on the right side of
Eq. (4) of course disappear.

The next important ®nding of Aucar et al. [17] is that
± in the case of invariance with respect to time-reversal ±
hermitian operators are purely expanded in terms of X�,
and anti-hermitian operators in terms of Xÿ operators.
Furthermore, the commutator of two X� or two Xÿ
operators gives an Xÿ, and the commutator of di�erent
operators gives an X� operator. As a consequence,
Baker-Campbell-Hausdor� expansions required in the
MCSCF procedure outlined below lead to purely sym-
metric operators, when an anti-hermitian spinor trans-
formation operator and the hermitian Hamiltonian are
considered.

The basis functions employed in the procedure are
2-spinors ful®lling the condition for Kramers pairs, i.e.
they are related via the time-reversal operation. Another
basic feature of these spinors is the fact that both a and
b spin functions are in general contained in each func-
tion as a linear combination. Making use of double
group symmetry, though, will give symmetry-adapted
basis functions splitting the spin functions into di�erent
irreducible representations in certain cases. Moreover,
the spinors are allowed to rotate independently, which
may also be regarded as a generalization of spin-aver-
aged approaches where this degree of freedom is
missing.

2.2 Relativistic CASSCF method

The general principles of MCSCF theory [19] are fully
retained in the relativistic case [1]. There are some
changes in structural details, though, as for instance in
the appearance of the gradient and the Hessian matrix.
The ®rst thing to be accomplished is the wave function
parametrization. The anti-hermitian operator for the
spinor rotations is found to be

Â �
X

IJ

AIJ XÿIJ �
1

2
AIJ Xÿ

IJ
� AIJ Xÿ

IJ

� �� �
: �6�

We obtain this operator by regarding a unitary
transformation V � eÂ which transforms the wave
function and the spinors in an analogous manner. The
operator consists of X̂ÿ operators only, so the rotations
are restricted to time-reversal symmetry conserving
operations. In addition, V relates the creators corre-
sponding to a rotated state to those of the unrotated
state by

VayM V ÿ1 � ~ayM
Vay

M
V ÿ1 � ~ay

M
;

so the Kramers partners are transformed analogously.
We expand the last two expressions to ®rst order
and then apply time-reversal to a rotated creatorÿ
K̂~ayM K̂y � ~ay

M

�
. Comparing the resulting expressions

yields

A�IM � AIM

ÿ A�
IM
� AIM

with the help of

A�IJ � ÿAJI �7�
A�

IJ
� ÿAIJ �8�

A�
IJ
� ÿAIJ ; �9�

where the anti-hermiticity of Â is used. We then obtain
Eq. (6). The operator part AIJ Xÿ

IJ
is contained in the

unbarred part, as these two terms are equivalent when
summed over I and J .

The second-order energy expansion depending on
spinor and con®gurational parameters S and their
complex conjugates then takes the form

E�A; A�; S; S�� � 0 Ĥ
�� ��0
 �� 0 Â; Ĥ

� ��� ��0
 �
� 0 Ŝ; Ĥ

� ��� ��0
 �� 1

2
0 Â; Â; Ĥ

� �� ��� ��0
 �
� 1

2
0 Ŝ; Ŝ; Ĥ

� �� ��� ��0
 �� 1

2
0 Ŝ; Â; Ĥ

� �� ��� ��0
 �
� 1

2
0 Â; Ŝ; Ĥ

� �� ��� ��0
 �
: �10�

By introducing the following notation
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0 Ĥ
�� ��0
 � � E0

0 Â; Ĥ
� ��� ��0
 � � AyF

0 Ŝ; Ĥ
� ��� ��0
 � � SyM

0 Â; Â; Ĥ
� �� ��� ��0
 � � AyGA

0 Ŝ; Ŝ; Ĥ
� �� ��� ��0
 � � SyHS

0 Ŝ; Â; Ĥ
� �� ��� ��0
 � � AyZS

0 Â; Ŝ; Ĥ
� �� ��� ��0
 � � SyZyA

the energy expectation value adopts the matrix form

E�A;A�; S; S�� � E0 � Ay Sy
ÿ � F

M

� �
� 1

2
Ay Sy
ÿ � G Z

Zy H

 !
A

S

� �
: �11�

Minimization of the energy expectation value is car-
ried out by means of variations with respect to both
spinor and con®gurational parameters:

@E
@S
� 0;

@E
@A
� 0

The ®rst step is the FCI optimization in a con®gura-
tional space of active spinors. The wave function
obtained will be invariant with respect to variation of
the S parameters, so M will be zero. This leads to the
matrix equation

F
0

� �
� G Z

Zy H

� �
A
S

� �
� 0

0

� �
: �12�

F contains Fock operator matrix elements corre-
sponding to the ®rst derivatives of the energy with respect
to spinor rotation, G is the matrix of second derivatives
with respect to spinor rotations, H is the basis of the CI
eigenvectors and is diagonal, and Z is the matrix of the
mixed second derivatives between the spinor rotation
parameters A and the CI expansion parameters S. In this
study we follow the quasi-Newton method introduced by
Eade and Robb [20] where matrix Eq. (12) represents the
starting point for an inverse Hessian update procedure
with a diagonal Hessian matrix initialization. In the fol-
lowing, we present all explicit formulae required for this
approach and outline their derivation within the rela-
tivistic formalism introduced above.

3 Spinor transformation

Rotations of the one-particle basis functions from given
subspaces represent the core of the MCSCF procedure.
Unitary transformations are carried out in the con®gu-
ration and spinor spaces simultaneously [21], but in this
study we want to focus on the rotations in the spinor
space only.

3.1 Fock matrices and double group symmetry

The original form of the gradient introduced byHinze [22]

gij � Fji ÿ Fij

in terms of Fock matrix elements is now modi®ed to [1]:

gIJ � FJI ÿ F �IJ
due to complexity of the basis functions in general and
the integrals in the Fock matrices. In analogy to the
spin-free formalism, inactive and active Fock matrices
may be set up, where the appropriate subspace indices
are employed. Indices A,B,C . . . represent inactive; R,S
represent secondary; T,U,V . . . active; and the indices
I,J,K . . . represent general spinors.

F In
PQ � 2hPQ �

X
B

4�PQjBB� ÿ 2�PBjBQ� ÿ 2�PBjBQ�� 	
�13�

F Ac
PQ �

X
TU

�
D�TU �PQjTU� ÿ �PU jTQ�� �:

� D�
TU
�PQjTU� ÿ �PU jT Q�� �

� D�
T U
�PQjT U� ÿ �PU jT Q�� �

�D�
T U
�PQjT U� ÿ �PU jTQ�� �� �14�

Making use of double group symmetry in the for-
malism has crucial e�ects not only in the CI part of the
CASSCF, where spin-dependent matrix elements may be
brought to real form by constructing symmetry-adapted
basis functions and exploiting time-reversal symmetry
[23], but also on the Fock matrices in the spinor opti-
mization, where a number of simpli®cations take e�ect.
D�2h and subgroups will be taken into account in this
analysis as the implementation will be limited to these
cases for technical reasons. In the following, we work
out the e�ects of the double group calculus on the
inactive and active Fock matrices in detail.

When there is no symmetry (C�1) the Fockmatrix has to
be calculated fully. In the second quaternionic matrix
group in question, C�i , all terms are retained if the active
spinors T and U belong to the same fermion irrep. If they
do not, the active Fock matrix F Ac

PQ vanishes. The same
holds for F Ac

PQ
and F Ac

PQ
, as time-reversal does not bring the

spinors to a di�erent fermion irrep in this double group.
As concerns complex matrix groups, C�2 and C�s be-

have identically. The time-reversal operation now relates
spinors falling into di�erent fermion irreps. The matrix
elements FPQ and FPQ now vanish, irrespective of the

symmetry of the active spinors T and U . FPQ has to be
calculated in general, but it loses its integrals with an
odd number of bars when C�T � � C�U� and its integrals
with an even number of bars when C�T � 6� C�U�.

The third complex matrix group, C�2h, has four fer-
mion irreps and therefore the situation is somewhat
more complicated. Again, the matrix elements FPQ and
FPQ vanish. F In

PQ has to be calculated, but in F Ac
PQ the odd-

barred integrals vanish when C�T � � C�U�. If C�T � 6� C�U�,
three cases have to be distinguished. We denote the eight
irreducible representations of C�2h according to [24] and
derive all possibilities for direct products of the occur-
ring spinor symmetries as
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Cs
i 
 Cÿs

i � Cÿ2
Cs

i 
 Cÿs
j � Cÿ1

Cs
i 
 Cs

j � C�1
Cs

i 
 Cs
i � C�2 :

s denotes the sign in the irrep, i; j the number index. If
the di�erence between the spinor symmetries of T and U
is due to the s=ÿ s label, all integrals in the active Fock
matrix vanish. The same holds for the second case,
where s=ÿ s and i=j make the di�erence. But if the
symmetries merely di�er by the i=j label, only the even-
barred integrals vanish, comprising the third case. As
was stated for the other complex matrix groups, these
structural facts are due to the relation of di�erent
symmetry spinors by the time-reversal operation.

When real matrix groups D�2h, D�2, and C�2v which are
non-abelian are considered, one has to construct a sym-
metry-adapted basis for the true two-dimensional fermion
irreps. Then the mixed Fock matrix elements FPQ and FPQ
are zero as before, and in addition, integrals may be
brought to real form if a Kramers basis is employed.

3.2 Spinor gradient

The general expressions which have to be evaluated
appear as

gIJ � 0 X̂ÿIJ ; Ĥ
� ��� ��0
 � � @E

@AIJ
� dAIJ

as well as the terms with one bar on either I or J . The
required commutators read

X̂ÿIJ ; X̂
�
KL

� � � dJKX̂�IL ÿ dILX̂�KJ

X̂ÿIJ ; X̂
�
KL

h i
� ÿdILX̂�

KJ
� dIK X̂�

LJ

X̂ÿIJ ; X̂
�
KL

h i
� ÿdJLX̂�

IK
� dJKX̂�

IL

X̂ÿ
IJ
; X̂�KL

h i
� ÿdJLX̂�

KI
ÿ dILX̂�

KJ

X̂ÿ
IJ
; X̂�

KL

h i
� ÿdILX̂�JK ÿ dJLX̂�IK � dIK X̂�JL � dJK X̂�IL

X̂ÿ
IJ
; X̂�

KL

h i
� 0

X̂ÿ
IJ
; X̂�KL

h i
� dJKX̂�

IL
� dIK X̂�

JL

X̂ÿ
IJ
; X̂�

KL

h i
� 0

X̂ÿ
IJ
; X̂�

KL

h i
� dJKX̂�LI ÿ dJLX̂�KI � dIK X̂�LJ ÿ dILX̂�KJ

X̂ÿIJ ; x̂
��
KLMN

h i
� dIK x̂��

LJMN
ÿ dILx̂��

KJMN

� dJM x̂��
KLIN
ÿ dIN x̂��

KLMJ

X̂ÿIJ ; x̂
��
KLMN

h i
� ÿdJLx̂��

IKMN
� dJK x̂��

ILMN

� dJM x̂��
KLIN
ÿ dIN x̂��

KLMJ

X̂ÿIJ ; x̂
��
KLMN

h i
� ÿdILx̂��

KJMN
� dIK x̂��

LJMN

ÿ dJN x̂��
KLIM

� dJM x̂��
KLIN

X̂ÿIJ ; x̂
��
KLMN

h i
� ÿdILx̂��

KJMN
� dIK x̂��

LJMN

ÿ dIN x̂��
KLMJ

� dIM x̂��
KLNJ

X̂ÿIJ ; x̂
��
KLMN

h i
� ÿdJLx̂��

IKMN
� dJK x̂��

ILMN

ÿ dJN x̂��
KLIM

� dJM x̂��
KLIN

X̂ÿIJ ; x̂
��
KLMN

h i
� ÿdJLx̂��

IKMN
� dJK x̂��

ILMN

ÿ dIN x̂��
KLMJ

� dIM x̂��
KLNJ

X̂ÿIJ ; x̂
��
KLMN

h i
� dJK x̂��

ILMN
ÿ dILx̂��

KJMN

ÿ dIN x̂��
KLMJ

� dIM x̂��
KLNJ

X̂ÿIJ ; x̂
��
KLMN

h i
� dJK x̂��

ILMN
ÿ dILx̂��

KJMN

ÿ dJN x̂��
KLIM

� dJM x̂��
KLIN

X̂ÿ
IJ
; x̂��KLMN

h i
� ÿdJLx̂��

KIMN
ÿ dILx̂��

KJMN

ÿ dJN x̂��
KLMI

ÿ dIN x̂��
KLMJ

X̂ÿ
IJ
; x̂��

KLMN

h i
� ÿdILx̂��JKMN ÿ dJLx̂��IKMN

� dIK x̂��JLMN � dJK x̂��ILMN

ÿ dJN x̂��
KLMI

ÿ dIN x̂��
KLMJ

X̂ÿ
IJ
; x̂��

KLMN

h i
� ÿdJN x̂��

KLMI
ÿ dIN x̂��

KLMJ

X̂ÿ
IJ
; x̂��

KLMN

h i
� ÿdILx̂��

JKMN
ÿ dJLx̂��

IKMN

� dIK x̂��
JLMN

� dJK x̂��
ILMN

X̂ÿ
IJ
; x̂��

KLMN

h i
� ÿdILx̂��

JKMN
ÿ dJLx̂��

IKMN

� dIK x̂��
JLMN

� dJK x̂��
ILMN

ÿ dIN x̂��
KLJM

ÿ dJN x̂��
KLIM

� dIM x̂��
KLJN

� dJM x̂��
KLIN

X̂ÿ
IJ
; x̂��

KLMN

h i
� 0

X̂ÿ
IJ
; x̂��KLMN

h i
� ÿdIN x̂��KLJM ÿ dJN x̂��KLIM

� dIM x̂��KLJN � dJM x̂��KLIN

ÿ dJLx̂��
KIMN

ÿ dILx̂��
KJMN

X̂ÿ
IJ
; x̂��

KLMN

h i
� ÿdIN x̂��

KLJM
ÿ dJN x̂��

KLIM

� dIM x̂��
KLJN

� dJM x̂��
KLIN

X̂ÿ
IJ
; x̂��

KLMN

h i
� ÿdJLx̂��

KIMN
ÿ dILx̂��

KJMN

X̂ÿ
IJ
; x̂��KLMN

h i
� dJK x̂��

ILMN
� dIK x̂��

JLMN

� dJM x̂��
KLIN
� dIM x̂��

KLJN
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X̂ÿ
IJ
; x̂��

KLMN

h i
� dJM x̂��

KLIN
� dIM x̂��

KLJN

X̂ÿ
IJ
; x̂��

KLMN

h i
� dJK x̂��LIMN ÿ dJLx̂��KIMN

� dIK x̂��LJMN ÿ dILx̂��KJMN

� dJM x̂��
KLIN

� dIM x̂��
KLJN

X̂ÿ
IJ
; x̂��

KLMN

h i
� dJM x̂��

KLNI
ÿ dJN x̂��

KLMI

� dIM x̂��
KLNJ

ÿ dIN x̂��
KLMJ

X̂ÿ
IJ
; x̂��

KLMN

h i
� 0

X̂ÿ
IJ
; x̂��

KLMN

h i
� dJM x̂��

KLNI
ÿ dJN x̂��

KLMI

� dIM x̂��
KLNJ

ÿ dIN x̂��
KLMJ

� dJK x̂��
LIMN

ÿ dJLx̂��
KIMN

� dIM x̂��
LJMN

ÿ dILx̂��
KJMN

X̂ÿ
IJ
; x̂��

KLMN

h i
� dJM x̂��KLNI ÿ dJN x̂��KLMI

� dIM x̂��KLNJ ÿ dIN x̂��KLMJ

� dJK x̂��
ILMN

� dIK x̂��
JLMN

X̂ÿ
IJ
; x̂��

KLMN

h i
� dJK x̂��

ILMN
� dIK x̂��

JLMN

X̂ÿ
IJ
; x̂��

KLMN

h i
� dJK x̂��

LIMN
ÿ dJLx̂��

KIMN

� dIK x̂��
LJMN

ÿ dILx̂��
KJMN

:

Retaining the general indices in the gradient, we de-
rive the following expressions for the three di�erent
gradient elements:

gIJ � 0 X̂ÿIJ ; Ĥ
� ��� ��0
 �

� 0 X̂ÿIJ ; Ĥ
1ÿel� �� X̂ÿIJ ; Ĥ

2ÿel� �� 	�� ��0
 �
�
�
0

����X
K

hJKX̂�IK ÿ hKI X̂�KJ � hIKX̂�
KJ
� hJKX̂�

IK

n o
� 1

2

X
KLM

n
2�JKjLM�x̂��IKLM ÿ 2�KIjLM�x̂��KJLM

� 2�IKjLM�x̂��
KJLM

� �KLjJM�x̂��
KLIM

ÿ �KLjMI�x̂��
KLMJ

� 2�JKjLM�x̂��
IKLM

� �KLjJM�x̂��
KLIM

ÿ �KLjMI�x̂��
KLMJ

� �IKjLM�x̂��
KJLM

� �KLjJM�x̂��
KLIM

� �KLjIM�x̂��
KLMJ

� �JKjLM�x̂��
IKLM

o���� 0� �15�

gIJ �
1

2
0 X̂ÿ

IJ
; Ĥ

h i��� ���0D E
� 1

2
0 X̂ÿ

IJ
; Ĥ1ÿel

h i
� X̂ÿ

IJ
; Ĥ2ÿel

h in o��� ���0D E
� 1

2

�
0

����X
K

hJKX̂�
IK
� hIKX̂�

JK
� hJKX̂�KI � hIKX̂�KJ

n o

� 1

2

X
KLM

n
2�JKjLM�x̂��

IKLM
� 2�IKjLM�x̂��

JKLM

� �KLjJM�x̂��
KLIM

� �KLjIM�x̂��
KLJM

� 2�JKjLM�x̂��KILM � 2�IKjLM�x̂��KJLM

� �KLjJM�x̂��
KLIM

� �KLjIM�x̂��
KLJM

� �KLjJM�x̂��
KLMI

� �KLjIM�x̂��
KLMJ

� �JKjLM�x̂��
KILM

� �IKjLM�x̂��
KJLM

o����0� �16�

gIJ �
1

2
0 X̂ÿ

IJ
; Ĥ

h i��� ���0D E
� 1

2
0 X̂ÿ

IJ
; Ĥ1ÿel

h i
� X̂ÿ

IJ
; Ĥ2ÿel

h in o��� ���0D E
� 1

2

�
0

����X
K

ÿhKJ X̂�
KI
ÿ hKI X̂�KJ

� hIKX̂�JK � hJKX̂�IK
n o

� 1

2

X
KLM

n
ÿ 2�KJ jLM�x̂��

KILM
ÿ 2�KI jLM�x̂��

KJLM

� 2�IKjLM�x̂��JKLM � 2�JKjLM�x̂��IKLM

ÿ �KLjMJ�x̂��
KLMI

ÿ �KLjMI�x̂��
KLMJ

ÿ �KLjMJ�x̂��
KLMI

ÿ �KLjMI�x̂��
KLMJ

� �IKjLM�x̂��
JKLM

� �JKjLM�x̂��
IKLM

� �IKjLM�x̂��
JKLM

� �JKjLM�x̂��
IKLM

o����0� �17�

We now introduce the CASSCF subspace indices in
question, taking only non-redundant spinor rotations
into account. In order to evaluate the elements, the den-
sity matrices in terms of these subspaces are also needed.
One- and two-particle density matrix elements then read
as follows:

D�AB � 2dAB

DAB � DAB � 0;

D�
T T
� D�

T T
� 0:

P��AABB � 4

P��AAAA � 2

P��ABBA � P��
ABBA

� P��
ABBA

� ÿ2
P��

ABAB
� P��

ABAB
� 2

P��TUAA � P��AATU � 2D�TU

P��
T UAA

� P��
AAT U

� 2D�
T U

P��
T UAA

� P��
AAT U

� 2D�
T U

P��
T AUA

� P��
TAAU

� ÿD�
T U

P��
T AUA

� P��
ATAU

� D�UT

P��
TAUA

� P��
AT UA

� D�
T U

P��
T AUA

� P��
AT AU

� D�TU

P��
T AAU

� P��
AT AU

� ÿD�
T U
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P��
AT UA

� P��
ATAU

� D�
T U

P��TAAU � P��
T AAU

� P��
AT UA

� ÿD�TU

P��
T AAU

� P��ATUA � P��
ATUA

� ÿD�UT

All matrix elements containing at least one secondary
index of course vanish. With the help of these relations,
the gradient takes the ®nal form:

gAR � F In
RA � F Ac

RA �18�
gAR �

1

2
F In

RA
� F Ac

RA

n o
�19�

gAR �
1

2
F In

RA
� F Ac

RA

n o
�20�

gTR � 1

2

X
U

D�TU F In
RU � D�

T U
F In

RU

n o
� 1

2

X
UVW

n
2�RU jVW �P��TUVW � �UV jRW �P��

UVTW

� 2�RU jVW �P��
T UVW

� �UV jRW �P��
UV TW

� �UV jRW �P��
UVT W

� �RU jV W �P��
T UV W

o
�21�

gT R �
1

4

X
U

D�
T U

F In
RU
� D�

T U
F In

RU

n o
� 1

4

X
UVW

n
2�RU jVW �P��

T UVW
� �UV jRW �P��

UV T W

� 2�RU jVW �P��UTVW � �UV jRW �P��
UV T W

� �UV jRW �P��
UVWT

� �RU jV W �P��
UTV W

o
�22�

gT R �
1

4

X
U

D�TU F In
RU
� D�

T U
F In

RU

n o
� 1

4

X
UVW

n
ÿ 2�URjVW �P��

UT VW
� 2�RU jVW �P��TUVW

ÿ �UV jWR�P��
UVW T

ÿ �UV jWR�P��
UV W T

� �RU jV W �P��
TUV W

� �RU jV W �P��
TUV W

o
�23�

gAT � F In
TA � F Ac

TA �
1

2

X
U

ÿD�
TU

F In
UA ÿ D�

T U
F In

AU

n o
� 1

2

X
UVW

n
ÿ 2�UAjVW �P��UTVW � 2�AU jVW �P��

UTVW

ÿ �UV jWA�P��
UVWT

ÿ �UV jWA�P��
UV WT

� 2�AU jVW �P��TUVW ÿ �UV jWA�P��
UVW T

o
�24�

gAT �
1

2

h
F In

T A
� F Ac

T A
� 1

2

X
U

D�
T U

F In
AU
� D�

T U
F In

AU

n o
� 1

2

X
UVW

n
2�AU jVW �P��

T UVW
� �UV jAW �P��

UV T W

� 2�AU jVW �P��UTVW � �UV jAW �P��
UV T W

� �UV jAW �P��
UVWT

� �AU jV W �P��
UTV W

oi
�25�

gAT �
1

2

h
F In

T A
� F Ac

T A
� 1

2

X
U

D�TU F In
AU
� D�

T U
F In

AU

n o
� 1

2

X
UVW

n
ÿ 2�UAjVW �P��

UT VW
� 2�AU jVW �P��TUVW

ÿ �UV jWA�P��
UVW T

ÿ �UV jWA�P��
UV W T

� �AU jV W �P��
TUV W

� �AU jV W �P��
TUV W

oi
�26�

In the implementation no approximations should be
applied to the gradient. As a consequence, the full
two-particle density matrix in the active space has to be
calculated in order to determine the ®rst derivatives in
addition to those expressions which may be grouped to
Fock matrix elements.

3.3 Spinor Hessian

In this section detailed expressions for the spinor
Hessian will be given and the method of their
determination outlined.

As stated in Sect. 2.2 the spinor Hessian will be
written as

GI 0J 0IJ � dAI 0J 0dAIJ

� 1

2
0 X̂ÿI 0J 0 ; X̂ÿIJ ; Ĥ

� �� �� X̂ÿIJ ; X̂ÿI 0J 0 ; Ĥ
� �� ��� ��0
 �

� 0 X̂ÿI 0J 0 ; X̂ÿIJ ; Ĥ
� �� �ÿ 1

2
X̂ÿI 0J 0 ; X̂

ÿ
IJ

� �
; Ĥ

� ����� ����0� �
: �27�

As there is no essential di�erence between an un-
primed and a primed index, the second line of the above
expression comprises a symmetrized form of the general
Hessian elements. The next step simpli®es the future
manipulations because the commutator of two X̂ op-
erators is easily evaluated. The complete spinor Hessian
may now be obtained via the following nine matrix
elements, di�ering by the number of barred spinors, on
the one hand, and by non-redundant permutations of
the bars if there is an equal number of bars in two
considered terms, on the other:

GI 0J 0IJ � 0 X̂ÿI 0J 0 ; X̂ÿIJ ; Ĥ
� �� �ÿ 1

2
X̂ÿI 0J 0 ; X̂

ÿ
IJ

� �
; Ĥ

� ����� ����0� �
�28�

GI 0J 0IJ � 0 X̂ÿI 0J 0 ; X̂ÿ
IJ
; Ĥ

h ih i
ÿ 1

2
X̂ÿI 0J 0 ; X̂

ÿ
IJ

h i
; Ĥ

h i���� ����0� �
�29�

GI 0J 0IJ � 0 X̂ÿI 0J 0 ; X̂ÿ
IJ
; Ĥ

h ih i
ÿ 1

2
X̂ÿI 0J 0 ; X̂

ÿ
IJ

h i
; Ĥ

h i���� ����0� �
�30�

GI 0J 0IJ � 0 X̂ÿ
I 0J 0 ;
h
X̂ÿIJ ; Ĥ

ih i
ÿ 1

2
X̂ÿ

I 0J 0 ; X̂
ÿ
IJ

h i
; Ĥ

h i���� ����0� �
�31�

GI 0J 0IJ � 0 X̂ÿ
I 0J 0 ; X̂ÿ

IJ
; Ĥ

h ih i
ÿ 1

2
X̂ÿ

I 0J 0 ; X̂
ÿ
IJ

h i
; Ĥ

h i���� ����0� �
�32�

GI 0J 0IJ � 0 X̂ÿ
I 0J 0 ; X̂ÿ

IJ
; Ĥ

h ih i��� ���0D E
�33�

GI 0J 0IJ � 0 X̂ÿ
I 0J 0 ;
h
X̂ÿIJ ; Ĥ

ih i
ÿ 1

2
X̂ÿ

I 0J 0 ; X̂
ÿ
IJ

h i
; Ĥ

h i���� ����0� �
�34�
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GI 0J 0IJ � 0 X̂ÿ
I 0J 0 ; X̂ÿ

IJ
; Ĥ

h ih i
ÿ 1

2
X̂ÿ

I 0J 0 ; X̂
ÿ
IJ

h i
; Ĥ

h i���� ����0� �
�35�

GI 0J 0IJ � 0 X̂ÿ
I 0J 0 ; X̂ÿ

IJ
; Ĥ

h ih i��� ���0D E
�36�

The general evaluation of these expressions
without introducing the CASSCF subspaces is
lengthy. It still has been done, of course, and an
exemplifying pick is presented to describe the
structure of these terms in more detail. Equation
(32) then reads:

GI 0J 0IJ �ÿ hJ 0J X̂�II 0 ÿ hI 0J X̂�IJ 0 ÿ hJ 0I X̂�JI 0 ÿ hI 0I X̂�JJ 0

� 1

2

X
K

n
dJ 0I hKJ X̂�KI 0 � hJKX̂�

I 0K

�
�hI 0KX̂�JK � hI 0KX̂�

JK

�
� dI 0J hKI X̂�KJ 0 � hIKX̂�

J 0K
� hJ 0KX̂�IK � hJ 0KX̂�

IK

� �
� dI 0I hKJ X̂�KJ 0 � hJKX̂�

J 0K
� hJ 0KX̂�JK � hJ 0KX̂�

JK

� �
� dJ 0J hI 0KX̂�IK � hI 0KX̂�

IK
� hKI X̂�KI 0 � hIKX̂�

I 0K

� �o
� 1

2

X
KL

n
ÿ 2�J 0J jKL�x̂��II 0KL ÿ 2�I 0J jKL�x̂��IJ 0KL

ÿ 2�KJ jJ 0L�x̂��
KII 0L
ÿ 2�KJ jI 0L�x̂��

KIJ 0L

ÿ 2�J 0IjKL�x̂��JI 0KL ÿ 2�I 0IjKL�x̂��JJ 0KL

ÿ 2�KI jJ 0L�x̂��
KJI 0L
ÿ 2�KI jI 0L�x̂��

KJJ 0L

� 2�IKjJ 0L�x̂��
JKI 0L
� 2�IKjI 0L�x̂��

JKJ 0L

� 2�JKjJ 0L�x̂��
IKI 0L
� 2�JKjI 0L�x̂��

IKJ 0L

ÿ �KLjJ 0J�x̂��
KLII 0
ÿ �KLjI 0J�x̂��

KLIJ 0

ÿ �KLjJ 0I�x̂��
KLJI 0
ÿ �KLjI 0I�x̂��

KLJJ 0

� 2�KJ 0jLJ�x̂��
KI 0LI
� 2�KI 0jLJ�x̂��

KJ 0LI

� 2�KJ 0jLI�x̂��
KI 0LJ
� 2�KI 0jLI�x̂��

KJ 0LJ

ÿ �KLjJ 0J�x̂��
KLII 0
ÿ �KLjI 0J�x̂��

KLIJ 0

ÿ �KLjJ 0I�x̂��
KLJI 0
ÿ �KLjI 0I�x̂��

KLJJ 0

� 2�IKjJ 0L�x̂��JKLI 0 � 2�JKjJ 0L�x̂��IKLI 0

� 2�IKjI 0L�x̂��JKLJ 0 � 2�JKjI 0L�x̂��IKLJ 0

o
� 1

2

X
KLM

n 1
2
dI 0I

h
2�KJ jLM�x̂��KJ 0LM � 2�JKjLM�x̂��

J 0KLM

� �KLjMJ�x̂��
KLMJ 0

� �KLjMJ�x̂��
KLMJ 0

� �JKjLM�x̂��
J 0KLM

� �JKjLM�x̂��
J 0KLM

� 2�J 0KjLM�x̂��JKLM � �KLjJ 0M�x̂��
KLJM

� 2�J 0KjLM�x̂��
JKLM

� �KLjJ 0M�x̂��
KLJM

� �KLjJ 0M�x̂��
KLJM

� �J 0KjLM�x̂��
JKLM

i

� 1

2
dJ 0J

h
2�KI jLM�x̂��KI 0LM � 2�IKjLM�x̂��

I 0KLM

� �KLjMI�x̂��
KLMI 0

� �KLjMI�x̂��
KLMI 0

� �IKjLM�x̂��
I 0KLM

� �IKjLM�x̂��
I 0KLM

� 2�I 0KjLM�x̂��IKLM � �KLjI 0M�x̂��
KLIM

� 2�I 0KjLM�x̂��
IKLM

� �KLjI 0M�x̂��
KLIM

� �KLjI 0M�x̂��
KLIM

� �I 0KjLM�x̂��
IKLM

i
� 1

2
dI 0J

h
2�KI jLM�x̂��KI 0LM � 2�IKjLM�x̂��

J 0KLM

� �KLjMI�x̂��
KLMJ 0

� �KLjMI�x̂��
KLMJ 0

� �IKjLM�x̂��
J 0KLM

� �IKjLM�x̂��
J 0KLM

� 2�J 0KjLM�x̂��IKLM � �KLjJ 0M�x̂��
KLIM

� 2�J 0KjLM�x̂��
IKLM

� �KLjJ 0M�x̂��
KLIM

� �KLjJ 0M�x̂��
KLIM

� �J 0KjLM�x̂��
IKLM

i
� 1

2
dJ 0I

h
2�KJ jLM�x̂��KI 0LM � 2�JKjLM�x̂��

I 0KLM

� �KLjMJ�x̂��
KLMI 0

� �KLjMJ�x̂��
KLMI 0

� �JKjLM�x̂��
I 0KLM

� �JKjLM�x̂��
I 0KLM

� 2�I 0KjLM�x̂��JKLM � �KLjI 0M�x̂��
KLJM

� 2�I 0KjLM�x̂��
JKLM

� �KLjI 0M�x̂��
KLJM

� �KLjI 0M�x̂��
KLJM

� �I 0KjLM�x̂��
JKLM

io
�37�

Introducing the appropriate CASSCF subspaces into
all required matrix elements then results in the ®nal ex-
pressions for the complete spinor Hessian. This is done
in a straightforward fashion, and we work out the exact
formulae for the di�erent cases and propose some
helpful approximations for use in the actual im-
plementation.

Rotations of type inactive-virtual:

Three groups of matrix elements are to be distinguished
in this case. The ®rst group builds up the Fock matrix as
de®ned above without any surplus terms. Its resulting
form and identical elements are summarized below:

GRAAR � F In
AA ÿ F In

RR � F Ac
AA ÿ F Ac

RR

� G ARRA

� G RAAR

� GARRA

� G RARA

� G ARAR �38�
In contrast to the non-relativistic formalism, no ad-

ditional two-electron integrals appear in these matrix
elements. This is due to the replacement of Ê operators
with X̂ and x̂ operators, resulting in a separation of the
spin couplings into two components.
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The second group results in simple two-electron in-
tegrals containing the parameter indices. Hessian ele-
ments with an odd number of bars may occur in this
group, although most of them vanish. In addition, ele-
ments with an even number of bars appear as well, but
either their indices are permuted or the bars are in the
``anti-symmetric'' 1±3 or 2±4 position:

GARAR � 2 RAjRA� �
GRARA � 2 RAjRA

ÿ �
GRAAR � 2 ARjAR

ÿ � � GARRA

GRARA � 2 RAjAR
ÿ �

GARAR � 2 RAjRA
ÿ �

GARAR � 2 RAjRA
ÿ � � GARRA � G RARA

GARAR � 2 RAjRA
ÿ � � GARRA � G RARA

The remaining Hessian elements of this category vanish
and will therefore not be displayed here.

Rotations of type active-virtual:

For these types of indices the situation is similar to the
®rst case above. Again, there are three groups of
elements, the ®rst one giving rise to Fock-type terms:

GRTTR � ÿ 1
2

D�TT F In
RR �

1

4

X
U

D�
TU

F In
UT � D�TU F In

TU

n
�D�

T U
F In

T U
� D�

T U
F In

T U

o
�
X
UV

h
ÿ �RRjUV �P��TTUV ÿ �RU jVR�P��TUVT

� �RU jRV �P��
UTTV

ÿ 1

2
�UV jRR�P��

UVTT

ÿ �RU jVR�P��
T UVT

ÿ 1

2
�UV jRR�P��

UV TT

� �RU jRV �P��
UTT V

i
� 1

2

X
UVW

h
�UT jVW �P��UTVW � �UT jVW �P��

UTVW

� 1

2
�UV jWT �P��

UVWT
� 1

2
�UV jWT �P��

UV WT

� 1

2
�T U jV W �P��

T UV W
� 1

2
�UT jV W �P��

UT V W

� �TU jVW �P��TUVW �
1

2
�UV jTW �P��

UVTW

� 1

2
�UV jTW �P��

UV TW
� �T U jVW �P��

T UVW

� 1

2
�UV jT W �P��

UVT W
� 1

2
�T U jV W �P��

T UV W

i
� GTRRT �39�

The additional terms appearing in the sums may not
be grouped to Fock matrix elements. We abbreviate
them in the following by calling the ®rst sum G2a

RTTR and
the second sum G4a

RTTR, as two active indices appear in the

integrals of the ®rst sum and four active indices in those
of the second sum, respectively.

As in the case of inactive-virtual rotations four
elements with two barred indices each give identical re-
sults, their Fock-type expressions even resembling those
without barred indices:

GRTT R � ÿ
1

2
D�TT F In

RR �
1

4

X
U

D�
TU

F In
UT � D�TU F In

TU

n
� D�

T U
F In

T U
� D�

T U
F In

T U
g

�
X
UV

h
ÿ �RRjUV �P��TTUV ÿ �URjRV �P��

UTT V

� �RU jVR�P��
TUT V

ÿ 1

2
�UV jRR�P��

UVTT

ÿ �RU jVR�P��
UTV T

ÿ 1

2
�UV jRR�P��

UV TT

� �RU jRV �P��TUVT

i
� 1

2

X
UVW

h
�UT jVW �P��UTVW � �T U jVW �P��

T UVW

� 1

2
�UV jWT �P��

UVWT
� 1

2
�UV jWT �P��

UV WT

� 1

2
�T U jV W �P��

T UV W
� 1

2
�T U jV W �P��

T UV W

� �TU jVW �P��TUVW �
1

2
�UV jTW �P��

UVTW

� 1

2
�UV jTW �P��

UV TW
� �T U jVW �P��

T UVW

� 1

2
�UV jT W �P��

UVT W
� 1

2
�T U jV W �P��

T UV W

i
� GT RRT � GT RT R

� GRTRT �40�

The second group now does not reduce to plain two-
electron integrals like the second group above, but rather
gives rise to expressions containing two-particle densities
and integrals over two active and two virtual spinors
with a sum over two active indices:

GTRTR �
X
UV

RU jRV� �P��TUTV � 2 RU jRV
ÿ �

P��
T UTV

n
� RU jRV
ÿ �

P��
T UT V

o
GRTRT �

X
UV

URjVR� �P��UTVT � 2 URjVR
ÿ �

P��
UTVT

n
� URjV R
ÿ �

P��
UT V T

o
GT RT R �

X
UV

RU jRV� �P��
T UT V

� 2 RU jRV
ÿ �

P��
TUT V

n
� RU jRV
ÿ �

P��
TUTV

o
� G RT RT � G RT T R � G T RRT

GRT T R �
X
UV

URjVR� �P��
UT V T

� 2 URjVR
ÿ �

P��
UT V T

n
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� URjV R
ÿ �

P��
UTVT
g

� GT RT R � GRT RT � GT RRT

The last two equations may be deduced from the ®rst
two by barring all active parameter indices T in the re-
sulting terms.

GTRRT �
X
UV

n
RU jRV� �P��

T UTV
� RU jRV
ÿ �

P��UTTV � P��
T UT V

h i
� �RU jRV �P��

UTT V

o
� GTRT R

GRTT R �
X
UV

n
URjVR� �P��

UT VT
ÿ RU jVR
ÿ �

P��TUVT � P��
UTV T

h i
� �RU jRV �P��

TUV T

o
� GRTRT

The Hessian elements GRT T R, GRT RT , GTRT R; and GTRRT
give similar expressions.

The remaining group consists of the terms identical to
zero, but in this case only terms with the index pattern
GIJJI and an arbitrary number of barred spinors are in-
volved, in contrast to the third group in the above case.

Rotations of type inactive-active:

The three groups of matrix elements arising from these
types of rotations are similar considering their structure,
but as no virtual indices appear now, their explicit forms
are slightly more extensive. The Fock-type group now
contains active Fock matrices in addition, in contrast to
the second case of rotations above:

GATTA � F In
AA ÿ F In

TT � F Ac
AA ÿ F Ac

TT ÿ
1

2
D�TT F In

AA

� 1

4

X
U

D�
TU

F In
UT � D�TU F In

TU

n
�D�

T U
F In

T U
� D�

T U
F In

T U

o
�
X

U

n
D�TU ÿ�AAjTU� ÿ �AU jAT � � 2�AU jTA�� �

� D�UT 2�AT jUA� � �T AjAU� ÿ �UT jAA�� �
� D�

T U
�T AjAU� ÿ �T U jAA� ÿ 2�UAjAT �� �

� D�
T U
ÿ�AT jUA� � 2�AU jTA� ÿ �T U jAA�� �o

�
X
UV

n
ÿ �AAjUV �P��TTUV ÿ �AU jVA�P��TUVT

� �AU jAV �P��
UTTV

ÿ 1

2
�UV jAA�P��

UVTT
ÿ �AU jVA�P��

T UVT

ÿ 1

2
�UV jAA�P��

UV TT
� �AU jAV �P��

UTT V

o
� 1

4

X
UVW

n
2�UT jVW �P��UTVW � 2�UT jVW �P��

UTVW

� �UV jWT �P��
UVWT

� �UV jWT �P��
UV WT

ÿ �T U jV W �P��
UTV W

� �UT jV W �P��
UT V W

� 2�TU jVW �P��TUVW � �UV jTW �P��
UVTW

� 2�T U jVW �P��
T UVW

� �UV jTW �P��
UV TW

� �UV jT W �P��
UVT W

�T U jV W �P��
T UV W

o
� GTAAT �41�

In the ®rst element the aforementioned 2a and 4a
terms appear once again. In addition, there is a group of
terms which is not Fock-type, because the sum is merely
over one active index, so that the terms may not be
manipulated to give active Fock matrices.

Barring indices 1 and 4 reproduces the Fock part of
the above element, but the 2a and 4a parts as well as the
single active sum look di�erent:

G ATT A � F In
AA ÿ F In

TT � F Ac
AA ÿ F Ac

TT ÿ
1

2
D�TT F In

AA

� 1

4

X
U

D�
TU

F In
UT � D�TU F In

TU

n
�D�

T U
F In

T U
� D�

T U
F In

T U

o
�
X

U

n
D�TU �TAjAU� ÿ �AAjTU� � 2�AU jT A�� �

� D�
T U

2�T AjAU� � �AU jAT � ÿ �T U jAA�� �
� D�

T U
2�T AjUA� � �AU jTA� � �UT jAA�� �

� D�
TU

2�AT jUA� � �AT jUA� ÿ �UT jAA�� �o
�
X
UV

n
ÿ �AAjUV �P��TTUV ÿ �UAjAV �P��

UTT V

� �AU jAV �P��
TUT V

ÿ 1

2
�UV jAA�P��

UVTT

� �UAjVA�P��
UTV T

ÿ 1

2
�UV jAA�P��

UV TT

ÿ �AU jV A�P��TUVT

o
� 1

4

X
UVW

n
2�UT jVW �P��UTVW � 2�T U jVW �P��

T UVW

� �UV jWT �P��
UVWT

� �UV jWT �P��
UV WT

� �T U jV W �P��
T UV W

� �T U jV W �P��
T UV W

� 2�TU jVW �P��TUVW � �UV jTW �P��
UVTW

� 2�T U jVW �P��
T UVW

� �UV jTW �P��
UV TW

� �UV jT W �P��
UVT W

� �T U jV W �P��
T UV W

o
� G T AAT � G ATAT � G T AT A �42�

The second group consists of mixed expressions. In
addition to the results from case 2, terms containing one-
particle densities and plain two-electron integrals appear
in the elements:
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GATAT � 2�TAjTA� � 2
X

U

�
ÿ D�UT �TU jAA�

� D�
UT
�AU jTA�

�
�
X
UV

�UAjVA�P��UTVT � 2�UAjVA�P��
UTVT

n
��UAjV A�P��

UT V T

o
GTATA �2�AT jAT ��2

X
U

D�
T U
�UAjAT � ÿ D�TU �AU jAT �

n o
�
X
UV

�AU jAV �P��TUTV � 2�AU jAV �P��
T UTV

n
��AU jAV �P��

T UT V

o
GAT T A �

X
U

n
ÿ D�UT �T AjUA� � D�

T U
�AU jTA�

� D�UT �AU jTA� � D�
UT
�AU jT A�

o
�
X
UV

n
D�

UV
�TU jTV � ÿ D�

UV
�T U jT V �

h i
� �AU jAV �P��

UT T V
ÿ �AU jVA�P��

T UVT

ÿ �AU jVA�P��UTVT � �AU jAV �P��
UTVT

o
� GAT AT

GTAT A � ÿ2�T AjAT �
�
X

U

n
ÿ D�

T U
�AT jAU� � D�TU �T AjAU�

� D�
T U
�T AjAU� ÿ D�UT �AU jAT �

o
�
X
UV

�AU jAV �P��
T UTV

n
� �AU jAV � P��UTTV � P��

T UT V

h i
� �AU jAV �P��

UTT V
g � GTAAT

G AT T A � 2�T AjT A�
� 2

X
U

D�
T U
�T AjAU� � D�UT �AU jT A�

n o

�
X
UV

�AU jAV �P��
T UT V

� 2�AU jAV �P��
UT T V

n
� �AU jAV �P��UTVT g
� G AT AT � G T AT A � G T AAT

Similar expressions result when the bars are shifted to
the positions GIJKL and GIJKL, respectively.

The remaining group of elements vanishes in analogy
to case 2. Again, only elements with the index pattern
IIJJ are involved.

Note that elements of the type G IJKL, G IJKL; and G IJKL
are simply obtained by applying Schwartz's theorem to
the ones that have been calculated explicitly above.

3.3.1 Diagonal approximation

The crucial criterion for the introduction of any
approximation to the Hessian is the sheer number of
matrix elements that have to be calculated for larger
species, and the problems arising from the necessity of
inverting the Hessian matrix. Eade and Robb [20] give
some reasons for choosing an initial Hessian that is
restricted to its diagonal. In this case the inversion is
trivial. Approximating the Hessian in this manner will,
of course, slow down convergence, but the elements are
obtained quite easily on the other hand.

Arranging the gradient vector in a fashion where
rotation types are blocked and within these blocks the
di�erent positions of bars are accounted for, we obtain a
general form:

g �

dAAR

dAAR
dAAR
dATR

dAT R
dAT R
dAAT

dAAT
dAAT
dA�AR
dA�

AR
dA�

AR

..

.

0BBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCA

�43�

Given the gradient in this form, the spinor Hessian is
displayed as:

G �

ARRA ARRA ARRA ARRT ARRT ARRT ARTA ART A ART A
ARRA ARRA ARRA ARRT ARRT ARRT ARTA ART A ART A . . .
ARRA ARRA ARRA ARRT ARRT ARRT ARTA ART A ART A
TRRA TRRA TRRA TRRT TRRT TRRT TRTA TRT A TRT A
T RRA T RRA T RRA T RRT T RRT T RRT T RTA T RT A T RT A . . .
T RRA T RRA T RRA T RRT T RRT T RRT T RTA T RT A T RT A
ATRA AT RA ATRA ATRT AT RT ATRT ATTA AT T A ATT A
AT RA ATRA AT RA ATRT ATRT AT RT ATTA ATT A AT T A . . .
ATRA AT RA ATRA ATRT AT RT ATRT ATTA AT T A ATT A

AR�RA AR�RA AR�RA AR�RT AR�RT AR�RT AR�TA AR�T A AR�T A AR�RA� . . .
..
. ..

. ..
. ..

.

0BBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCA
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We denote a derivative dAAR simply as AR in this
matrix. An asterisk symbolizes a complex conjugate
parameter in the derivative. These complex conjugate
elements are related to the real terms by the parameter
relations (7, 8, 9). So merely the upper left quarter block
of the Hessian matrix has to be calculated, as the re-
maining three blocks can be related to the latter via these
expressions.

Now the diagonal approximation is obvious. The o�-
diagonal blocks, ARRT for instance, will not be taken
into account. The o�-diagonal elements within the di-
agonal blocks are given in explicit form above. The ap-
proximation of these and the terms in the true diagonal
is discussed in the next subsection.

An element AR in the gradient is actually a vector
with #A�#R rows. As a consequence, the corre-
sponding Hessian element ARRA is a matrix with
#A�#R rows and #A�#R columns. All o�-diagonal
elements within one of these blocks are neglected as well.

3.3.2 Further approximation

The diagonal of the Hessian matrix contains elements
with either no bars at all or two bars with the pattern
IJKL or IJKL, respectively. The exact Hessian elements
contain in general a summation over products of two-
electron integrals and two-electron density matrices.
From the explicit formulae for the Hessian elements it is
noted that the involved two-electron integrals span a
wider class than those required for the construction of
the gradient. For example, the active-virtual Hessian
elements require integrals with two virtual spinor
indices, whereas the gradient only requires integrals
with a single virtual spinor index. It is therefore
advantageous if the true two-electron terms in the
Hessian elements can be simpli®ed. In line with the
approximate Newton method of Eade and Robb [20],
one can accomplish this simpli®cation by introducing an
approximate decoupling of the two-electron density
matrices. This decoupling is exact for spinors that are
unoccupied or doubly occupied, and is a very good
approximation for spinors having occupations close to
these limits. By introducing this approximate decoupling
and disregarding the terms that do not reduce to Fock-
like elements, one obtains a rather simple approximation
to the Hessian.

All approximations are introduced successively and
may therefore be lifted one by one in order to check for
convergence properties of the procedure, if so desired.

4 Summary

Complete expressions of Fock matrices, gradient, and
Hessian matrix for the implementation of a spin-

dependent relativistic CASSCF program on consider-
ation of time-reversal and double group symmetries are
presented. We derive exact gradient and Hessian ele-
ments for the spinor transformation part and express
these in terms of Fock matrix elements. Approximations
for the Hessian are introduced where surplus terms
appear, and the complete Hessian is set up in diagonal
form for convenient application in a quasi-Newton-
Raphson procedure.
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